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Abstract

An explicit algebraic stress equation,
developed by Gatski and Speziale, is used in the

framework of the K-e formulation to predict
complex aerodynamic turbulent flows. The

nonequilibrium effects are modeled through

coefficients that depend nonlinearly on both
rotational and irrotational strains. The

proposed model was implemented in the ISAAC
Navier-Stokes code. Comparisons with the

experimental data are presented which clearly
demonstrate that explicit algebraic stress

models can predict the correct response to
nonequilibrium flows.

I. Introduction

Computational fluid dynamics has become

an increasingly powerful tool in the aerody-

namic design of aerospace vehicles as a result of

improvements in numerical algorithms and
computer capabilities (e.g., speed, storage).

Major future gains in efficiency are expected to

come about as massively parallel supercomputer

technology matures. However, some critical

pacing items limit the effectiveness of computa-

tional fluid dynamics in engineering. Chief

* Senior Scientist.
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among these items is turbulence modeling.
Numerous turbulence models of varying degrees

of complexity, which can be classified as either
eddy viscosity or full Reynolds stress models,

have been proposed. Excellent reviews of turbu-

lence models have been recently provided by

both Speziale 1 and Wilcox. 2

Eddy viscosity models use the Boussinesq

isotropic effective viscosity concept, which as-
sumes that the turbulent stresses in the mean

momentum equation are equal to the product of

an eddy viscosity and a mean strain rate. Zero-,
one-, and two-equation models are among the

most popular eddy viscosity models for

engineering applications because of their ease of
implementation in computational fluid dynam-

ics codes. Algebraic or zero-equation models,

which assume local equilibrium of the turbulent
and mean flow, have provided reasonable

predictions for simple flows. When the turbu-
lent transport is important or the mean

conditions change abruptly, these models do not

work well. One-equation models improve the

predictions for simple near-equilibrium flows
but do not account for more complex effects on

turbulence. Two-equation models are developed

to take explicit account of the history of the

turbulence through two transport equations for

combinations of the turbulent length and time
scales. These models offer good predictions of



the characteristics and physics of simple
separatedflowsandflowswithgradualchanges
in boundaryconditions. However,basictwo-
equationmodelsfail in manypractical flows
becausethey cannot properly account for
streamlinecurvature, rotational strains and
buoyancy;theyprovidean incorrectresponseto
strong adversepressuregradients;and they
cannotdescribetheanisotropyofturbulence.As
a result,variousadhocmodificationsto these
modelshave been proposedto achievethe
properresponse(seeLakshminarayanaa).In
thesemodifications,effectsonturbulence,such
asthosedueto streamlinecurvature,havebeen
directly accountedfor in the eddy viscosity
expressionor havebeenreflectedindirectly in
the turbulence-modelequationsby modifying
the dissipation-rateequation. The improved
two-equationmodelspredicta wider rangeof
flows;however,theystill fail toproperlycapture
the physicsin a broad classof flows. To
overcomesome of these deficiencies,two-
equationturbulencemodelsthat arenonlinear
in the mean strain rate were proposedby
Spezialea and Rubinstein and Barton. 5 These

models have provided accurate predictions of
turbulence intensities. However, these models

are not consistent with full Reynolds stress
models because they have constant coefficients.

Full Reynolds stress models represent the

highest level of closure that is currently feasible
for practical calculations. These models are

superior to the two-equation models in that they

eliminate the assumption that the turbulent
stresses respond immediately to changes in the

mean strain rate. Also, they account for the

anisotropy of turbulence and body force effects

on turbulence (e.g., due to streamline curvature

and rotation) through extra production terms
that explicitly appear in the Reynolds stress

transport equation. However, models for many

unknown turbulent quantities are required.

This need is generally met by assuming that the

turbulence is locally homogeneous and in equi-

librium. Existing Reynolds stress models have

been shown to give good descriptions of two-
dimensional mean turbulent flows that are near

equilibrium. However, computer costs and

numerical stability problems that arise from the

absence of a turbulent viscosity make assess-
ments of the limitations of these models in

predicting complex flows difficult. However,
second-order closure models could be used to

derive better two-equation models because

fundamentally they are constructed on a

stronger theoretical basis than the lower level
models.

Recently, a methodology for deriving a

general nonlinear constitutive relation (or an

explicit algebraic stress equation) for the

Reynolds stress tensor from second-order
closures, has been proposed by Gatski and

Speziale, 6 based on the ideas of Pope. 7 This
derivation is based on the assumptions that the

net convection of the turbulent stresses is pro-

portional to the net convection of the turbulent

kinetic energy and that the structural parame-
ters of the turbulence are constant along a

streamline. As a result, a new generation of

non-linear two-equation models is obtained with
coefficients that depend on rotational and
irrotational strains. This new feature extends

the range of applicability of the standard two-
equation models.

Abid et al. s used the explicit algebraic
stress relation within the context of the K-a) and

K-c two-equation format to predict separated
airfoil flows. The Launder, Reece and Rodi 9

pressure-strain correlation model was consid-

ered in the above study. Comparisons with the

experimental data have shown that this new
nonlinear turbulence model improves the ability

of two-equation models to account for nonequi-

librium effects. However, the Reynolds stress
anisotropies were not well predicted.

In this paper, the algebraic stress relation

is applied within the context of the K-e two-

equation format using the Speziale, Sarkar and

Gatski x° pressure-strain correlation model. The

ability of the proposed model to predict complex
flows which include nonequilibrium and

anisotropic effects is assessed. Transonic flows

over two airfoils and a wing are considered in

this study. The ISAAC Navier-Stokes code is

used to compute the three test cases.
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H. Theoretical Analysis

For a weakly compressible turbulent flow

at high Reynolds numbers, the Reynolds stress

tensor vij = uiuj is a solution of the transport

equation 11

D z_j _ • _ 2
OTf[j -- T Jk O_ i + I-Iij e_ij

Dt &k "P a

+Di T + vV2zij (1)

given that Ilij is the pressure-strain correlation,

DiT is the turbulent transport term, e is the

turbulent dissipation-rate, v is the kinematic

viscosity, _/ is the mean-velocity component,

and _ is the mean density. Explicit compress-

ibility effects are neglected in Eq. (1) due to the

applicability of Markovin's hypothesis in these

weakly compressible flows.

If we contract the indices in (1), then we

obtain the transport equation for the turbulent

kinetic energy K = uiu i /2 :

DK P - e + D_: +vV2K
Dt

that P=-zij(dffi/Jxi). - .,, is the turbulencegiven

production term and D k is the turbulent

transport term.

Rodi TM proposed the idea of algebraic stress

closure, which provides algebraic equations

without solving differential equations for the

Reynolds stresses. He assumed that

T Tij (DK DT _vV2K) (3)-vV2vij-Dij='-_[,--_ "- K

and

where

Dbij = 0
Dt

ZiJ_2 KSij

bij= 2K

are the mean-rate-of-strain tensor and mean-

(2) vorticity tensor, respectively.

Given a pressure-strain-correlation model,

(6) provides an implicit algebraic equation for

the determination of the Reynolds stress zij.
Computations that use this model have shown

that stable numerical solutions can be difficult

to obtain. Hence, an explicit algebraic stress

equation which is a mathematically consistent

representation of (6) is preferable.

Pope 7 developed a methodology for obtain-

ing explicit algebraic stress equations by using a

tensorial polynomial expansion in the integrity

basis, s Gatski and Speziale 6 used this method

to derive an explicit algebraic stress equation for
two- and three-dimensional turbulent flows. In

(4) order to generalize their results, they applied

their algebraic stress representation to the

general class of pressure-strain correlation

models for Hij which are linear in the

(5) anisotropic tensor bij. The general linear form

of Hij is

Reynolds stress closures: the convection term

minus the diffusion term in the Reynolds stress

equation is proportional to the convection term

minus the diffusion term in the turbulent

kinetic energy equation and the Reynolds stress

anisotropy bij is constant along a streamline.

The substitution of (3) and (4) into (1)

yields the following algebraic stress equation:

(P - t_)b ij = - 2 KSo - K( bik S fl + bjk Sik

2 4-
--_bmnSmnSq)- K(bikWjl_ bjkWi, )+ [Iij-_- (6)

where

and

-- m

l(3ui +JuJl (7)
SiJ = 2 t o3xj o_r,i )

is the Reynolds stress anisotropy. Physically,

two assumptions are made in the algebraic



Flij f

= -Clgbij + C2KSij + C3KtbikS fl + bjkSik

The explicit nonlinear constitutive equation,

derived by Gatski and Speziale, 6 is then given

after regularization by

(10)

with

itt = _C: K (11)

3(1+ r/2)al

C_ = 3 +r/2+ 6r/_¢2+ 6¢2
(12)

=- 0_2 ¢2 0_3 (13)

where _ is the mean density and eo = elK is

the specific dissipation rate. The constants in

(11)-(13) are given by

(%1 C g -i2 C _2 g2
a2-t - 3! -_- (14)

g2

=(2-c,)2T,

i (16)
a 5 = (2 - C 3)g, g = C__!

C5+ 1
2

To avoid numerical problems in the initial

stages of the computation or in the free-stream

region, a modified form of C_ is used

°+¢)
C; =a 1 3+7/2 +6_72¢ 2 +6¢2 +776 +¢6 (17)

which is equivalent to Eq. (12) to order y4 and

¢4. Relation (17) does not change the value of

C_ near equilibrium conditions, but limits C_ to
a small non-zero value (= 0.2ai) for high values

of 7/or ¢ to avoid numerical instabilities. In the

present study, the pressure-strain-correlation

model of Speziale, Sarkar, and GatskP ° is

considered; the coefficients are:

C 1 = 6.8, C 2 = 0.36, C 3 = 1.25,

C4=0.40 , C5= 1.88 (18)

The nonlinear constitutive equation (10)

must be solved in conjunction with the following

modeled transport equations.

°" +" (19)

and

_De _ _ ep C -'e2
P "-_ = _',, P --_ - e2Pf --_

• o', ) _bcj ) (20)

2
* --g *

given that it.re = C_p- and C_(= 0.081) is the
value of C_ in the logarithmic layer. The
coefficients of the model are

O"k = 1.0, tc = 0.40, Ce2 = 1.83, Ce_ = 1.44

and

/f2

(re = (21)

f = 1- ex - , y+ = pyu---z-_
it

(22)

given that u_ is the shear velocity and y is

normal to the wall. Note that new model can be

integrated directly to the wall without adding a

damping to the eddy viscosity. The function f is

introduced to remove the singularity in the

dissipation rate equation at the wall.

At the wall, the boundary conditions for K
and e are

4



K:o 2v/ )2 (23)

HI. Results and Discussion

The calculations to be presented were done
with the three-dimensional Navier-Stokes

ISAAC code, 13 which uses a second-order accu-

rate finite-volume scheme. The convective

terms are discretized with an upwind scheme

that is based on Roe's flux-difference splitting

method. All viscous terms are centrally differ-

enced. The equations are integrated in time

with an implicit, spatially split approximate-

factorization scheme.

The performance of the explicit algebraic

turbulence model (hereafter referred to as

EASM) was evaluated for the fiat-plate turbu-

lent boundary layer at a zero-pressure gradient.

As expected (the results are not shown here),

the turbulence model yielded good predictions

for the mean-velocity profiles and skin-friction

coefficients. Although some turbulence proper-

ties near the wall are not captured (i.e., the peak

of the turbulent kinetic energy), the algebraic

stress model does give accurate results away

from the buffer layer (i.e., y+ > 30). Remember

that the algebraic stress model can be inte-

grated directly to a solid boundary with no

damping function in the turbulent eddy

viscosity.

The first two test cases to be considered are

the RAE 2822 airfoil flows (cases 9 and 10),

which were tested by Cooke et al.14 The airfoil

has a maximum thickness of 12.1 percent c and

a leading-edge radius of 0.827 percent c (c is the

chord of the airfoil). The grid used is a 257×97 C

mesh with 177 points on the airfoil, and a

minimum spacing at the wall of 0.932×10-%.

The outer boundary extent is approximately 18c,

and transition is assumed at 3 percent c. For

the case 9, the conditions include a Mach

number Moo = 0.73, an angle of attack a = 2.8 °,

and a Reynolds number Re = 6.5×106. This case

contains no separated flow. For the case 10, the

conditions include a Mach number Moo = 0.75,

an angle of attack _ = 2.72, and a Reynolds

number Re = 6.2x106. This case involves sepa-

ration based on visual surface streamline

patterns. However, there are no skin-friction

coefficient data indicating separation. Hence,

case 10 is considered as an incipiently separated

flow and, therefore, is more challenging than the

previous case.

Figures 1 and 2 compare the surface

pressure and skin-friction coefficients computed

along the airfoil surface with the experimental

data for case 9. It is clear that the explicit alge-

braic stress model provides a good representa-

tion of the pressure over most of the airfoil.

However, the turbulence model over predicts the

skin-friction coefficient downstream of the

shock. This deficiency results from the tendency

of the models based on K-E formulation to

predict excessive near-wall levels of turbulent

length scale in the presence of an adverse pres-

sure gradient, which leads to high values of the

eddy-viscosity. A modification of the dissipation

equation is required in order to improve the

response of the algebraic stress model to adverse

pressure-gradient effects.

In order to demonstrate the improvement

resulting from the use of the EASM model for

non-equilibrium flows, comparisons between the

results obtained by the EASM model and the

Speziale, Abid and Anderson K-c model 15

(hereafter referred to as SAA) were performed

(Figures 3-10). From Figure 4, it appears

clearly that neither turbulence model predicts

separation. This is reflected by the high level of

the skin-friction coefficient, downstream from

the shock. This probably is a result of the

inability of the length scale equation to provide

proper response to adverse pressure gradients.

To date, several modifications to the dissipation

equation for separation do not seem to be

successful. On the other hand, the EASM model

predicts the shock location better than the SAA

model, although slightly downstream of the

experimental shock location (see Figure 3). This

results from the prediction by the EASM of

lower values of eddy viscosity in the inner part

of the boundary layer, therefore, lower values of

the turbulent kinetic energy (see Figure 7).

Comparison of the computed and measured

5



velocity profiles further support the latter

observation. An additional finding that can be

inferred from the above comparison is that the

EASM model gives a realistic representation of

the normal stresses (see Figures 8-10).

The third test case to be considered is the

ONERA M6 wing at Mach number of 0.8447, an

angle of attack a of 5.06 and a Reynolds number

of 11.7×106 based on the mean aerodynamic

chord. 16 A C-O grid, used in this study has

193×49×33 points in the streamwise, normal

and spanwise direction. The minimum normal

spacing over the wing of 0.000015 Croot and a

distance from the wing to the outer boundary of

at least 7.95 Croot • No wind tunnel test correc-

tions are employed for this case.

Figure 11 shows a comparison of the

Surface pressure distributions with the experi-

mental data at four different spanwise locations

2y/B. It is clear from this figure, that the

predicted shock location and the surface

pressure distributions by the EASM model are

in good agreement with the experimental data,

and similar to the results reported in [17] for the

Johnson-King model, which has been highly
tuned for airfoil flows.

Conclusions

A study of an explicit algebraic stress

model, used in the framework of the K-E

formulation for separated turbulent flows, has

been conducted. This new generation of two-

equation models, which is derived from second-

order closures, has been tested against three

test cases, two of which involve separation. Two

major findings have been made in this study:

explicit algebraic stress models have shown

some improvement over the standard two-

equation models because of their ability to

account for nonequilibrium effects and to give a

realistic representation of the anisotropy of the

turbulence. However, this improvement is still

limited by the dissipation rate equation which

fails to respond properly to adverse pressure

gradients. A major research effort to correct

this deficiency is currently underway.
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Figure 1: Surface pressure distributions for RAE 2822 airfoil (Case 9)
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